
CS395T: Continuous Algorithms
Homework I

Kevin Tian

Due date: January 30, 2024, start of class (3:30 PM).

Please list all collaborators on the first page of your solutions. Unless we have discussed and I have
specified otherwise, homework is not accepted if it is not turned in by hand at the start of class,
or turned in electronically on Canvas by then. Send me an email to discuss any exceptions.

1 Problem 1
Let f : Rd → R be a convex function. For each of the following functions F derived from f , either
prove F is always convex, or give a counterexample showing F may not always be convex.

(i) Let g(x) := Ax + b for A ∈ Rd×n, b ∈ Rd,1 and let F (x) := f(g(x)) for x ∈ Rn.

(ii) Let S ⊆ [d] and let F be a partial minimization of f over [d] \ S, i.e., for x ∈ RS , let
F (x) := miny∈R[d]\S f(x,y) where (x,y) ∈ Rd is associated with coordinates of [d] in the
natural way. Assume that the minimum is always achieved for any x ∈ RS .

(iii) Let g : R→ R be strictly convex, and let F (x) = g(f(x)).

(iv) Let g : R→ R be convex and monotone nondecreasing, and let F (x) = g(f(x)).

2 Problem 2
In each of the following cases, given access to an algorithm A achieving a purported runtime on
a class of functions F , design another optimization algorithm A′ which calls A, and can optimize
functions in F to ε additive error, in τ time for an arbitrarily small τ > 0, for any ε > 0.2

(i) A can optimize L-smooth functions over Rd to ε additive error in time L2

ε . Here, F is the
class of L-smooth functions over Rd, for some finite L > 0.

(ii) A can optimize L-Lipschitz functions over B(R) to ε additive error in time LR2

ε . Here, F is
the class of L-Lipschitz functions supported on B(R), for some finite L,R > 0.

3 Problem 3
Prove the following statements about regularity in the `∞ norm.

(i) If f : Rd → R is twice-differentiable and 1-smooth in `∞, Tr(∇2f(x)) ≤ 1 for all x ∈ Rd.

(ii) If f : Rd → R is 1-strongly convex in `∞, then

max
x∈X

f(x)−min
x∈X

f(x) ≥ d

2
, for X := [−1, 1]d.

1In other words, let g be an affine function.
2Clearly, this means such a purported runtime for A is impossible. In all cases, the culprit is non-scale-invariant

runtimes; this problem is a lesson on common sanity checks which can be applied to runtimes claimed in papers.
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4 Problem 4
Let f : Rd → R be a continuous and strictly convex function, let r ≥ 0, and let O be an oracle
which takes as input x ∈ Rd and returns the minimizer of f in B(x, r), i.e.,

O(x) = argminx′∈B(x,r)f(x′).

Suppose that x? := argminx∈Rdf(x) exists. Consider iterating the update, from some x0 ∈ Rd,

xt+1 ← O(xt), for all 0 ≤ t < T.

(i) Prove that for all 0 ≤ t < T , ‖xt+1 − x?‖2 ≤ ‖xt − x?‖2.

(ii) Let R := ‖x0 − x?‖2. Prove that

f(xT )− f(x?) ≤
(

1− r

R

)T
(f(x0)− f(x?)) .

5 Problem 5
Let f : Rd → R be convex and L-smooth for L > 0,3 and let x? ∈ argminx∈Rdf(x). Consider the
gradient flow ODE discussed in class, i.e., let d

dtxt = −∇f(xt) for all t ≥ 0.

(i) Prove that, for Φ(t) := 1
2 ‖xt − x?‖22, we have d

dtΦ(t) ≤ 0 for all t ≥ 0.

(ii) Prove that, for T ≥ 0 and x̄ = 1
T

∫ T
0
xtdt, we have

f(x̄)− f(x?) ≤
‖x0 − x?‖22

2T
.

3This is enough to conclude the ODE has a unique solution, by the Picard-Lindelöf theorem.
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